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Abstract. We study the large-time behavior of hydrodynamic model which describes the
collective behavior of continuum of agents, driven by pairwise alignment interactions with
additional external potential forcing. The external force tends to compete with alignment
which makes the large time behavior very different from the original Cucker-Smale (CS)
alignment model, and far more interesting. Here we focus on uniformly convex potentials.
In the particular case of quadratic potentials, we are able to treat a large class of admissible
interaction kernels, φ(r) & (1 + r2)−β with ‘thin’ tails β 6 1 — thinner than the usual
‘fat-tail’ kernels encountered in CS flocking β 6 1/2: we discover unconditional flocking
with exponential convergence of velocities and positions towards a Dirac mass traveling as
harmonic oscillator. For general convex potentials, we impose a stability condition, requiring
large enough alignment kernel to avoid crowd scattering. We then prove, by hypocoercivity
arguments, that both the velocities and positions of smooth solution must flock. We also
prove the existence of global smooth solutions for one and two space dimensions, subject
to critical thresholds in initial configuration space. It is interesting to observe that global
smoothness can be guaranteed for sub-critical initial data, independently of the apriori
knowledge of large time flocking behavior.
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1. Introduction

We are concerned with the hydrodynamic alignment model with external potential forcing:
∂tρ+∇x · (ρu) = 0,

∂tu + u · ∇xu =

∫
φ(|x− y|)(u(y, t)− u(x, t))ρ(y, t) dy −∇U(x).

(1.1)
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Here (ρ(x, t),u(x, t)) are the local density and velocity field of a continuum of agents, de-
pending on the spatial variables x ∈ Ω = Rd or Td and time t ∈ R>0. The integral term
on the right represents the alignment between agents, quantified in terms of the pairwise
interaction kernel φ = φ(r) > 0. In many realistic scenarios, agents driven by alignment are
also subject to other forces — external forces from environment, pairwise attractive-repulsive
forces, etc. Such forces may compete with alignment, which makes the large time behavior
very different from the original potential-free model and far more interesting. One of the
simplest type of external forces is potential force, given by the fixed external potential U(x)
on the right of (1.1). This is the main topic on the current work.

The system (1.1) is a realization of the large-crowd dynamics of the agent-based system in
which N � 1 agents identified with their position and velocity pair, (xi(t),vi(t)) ∈ (Ω×Rd),
are driven by Cucker-Smale (CS) alignment [CS2007a, CS2007b], with additional external
potential force 

ẋi = vi

v̇i =
1

N

∑
j 6=i

φ(|xi − xj|)(vj − vi)−∇U(xi)
i = 1, . . . , N. (1.2)

In the absence of any other forcing terms, both the agent-based system (1.2) and its large
crowd description (1.1) have been studied intensively in the recent decade. The most impor-
tant feature of the potential-free CS model, (1.2) with U ≡ 0, is its flocking behavior: for a
large class of interaction kernels satisfying the ‘fat tail’ condition,∫ ∞

0

φ(r) dr =∞, (1.3)

global alignment of velocities follows [HT2008, HL2009], |vi(t)− vj(t)|
t→∞−→ 0. The presence

of additional potential forcing in the one-dimensional discrete system (1.2) was recently stud-
ied in [HS2018], where it is shown that at least for some special choices of U , both position

and velocity align for large time, |vi(t)− vj(t)|+ |xi(t)− xj(t)|
t→∞−→ 0.

The corresponding potential-free continuum system, (1.1) with U ≡ 0, was studied in
[HT2008, HL2009, CFTV2010, MT2014]: the large time behavior of its smooth solutions

is captured by flocking, |u(x, t) − u(y, t)|ρ(x)ρ(y)
t→∞−→ 0, similar to the underlying dis-

crete system. Moreover, existence of one- and two-dimensional global smooth solutions was
proved for a large class of initial configurations which satisfy certain critical threshold condi-
tion, [TT2014, CCTT2016, ST2017a, ST2017b, HeT2017] and general multiD problems with
nearly aligned initial data [Sh2018, DMPW2018].

In this paper we study the alignment dynamics in the d-dimensional continuum system (1.1).
We focus on the following two key aspects of (1.1).
• The flocking phenomena of global smooth solutions, if they exist. Such results

are well known in the absence of external potential — smooth solutions subject to pure
alignment must flock [HT2008, TT2014, HeT2017], but the presence of external potential has
a confining effect which competes with alignment. Here we explore the flocking phenomena
in the presence of uniformly convex potentials

aId×d 6 ∇2U(x) 6 AId×d, 0 < a < A. (1.4)

The upper-bound on the right is necessary for existence of 1D global smooth solutions,
consult theorems 4.1–4.2 below; the uniform convexity on the left is necessary for the flocking
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behavior. We discover, in section 3, that both the velocities and positions of smooth solution
must flock at algebraic rate under a linear stability condition (3.10), m0φ(0) > A√

a
. The

necessity of a precise stability condition, at least in the general convex case, remains open.
We can be much more precise in the special case of quadratic potentials,

U(x) =
a

2
|x|2, a > 0. (1.5)

Here, in section 2, we discover unconditional flocking of velocities and positions with ex-
ponential convergence to a Dirac mass traveling as a harmonic oscillator. Moreover, the
confining effect of the quadratic potential applies to interaction kernels, φ(r) & (1 + r2)−β

which allow for ‘thin’ tails β 6 1 — thinner than the usual ‘fat-tail’ kernels encountered in
CS flocking (1.3).

• Existence of global smooth solutions. In the absence of external force, the existence
of global smooth solutions of the one- and respectively two-dimensional (1.1) was proved in
[TT2014, CCTT2016] and respectively [HeT2017], provided the initial data is ‘below’ certain
critical threshold expressed in terms of the initial data ∇u0. We mention in passing that
in case of singular kernel φ, then smooth solutions exist independent of an initial threshold
[ST2017a]). In the presence of additional convex potential, (1.4), we discover that the critical
thresholds still exist, though they are tamed by the presence of U (consult [TW2008]). In
the particular case of quadratic potential (1.5), U(x) does not affect the dynamics of the
spectral gap of ∇Su which is a crucial step of the regularity result in [HeT2017], leading to
existence of global smooth solutions. Existence with general convex potentials (1.4) requires
different methodology than the quadratic case. These results are summarized in section 4.

2. Statement of main results — flocking with quadratic potentials

We focus attention to quadratic potentials, U(x) =
a

2
|x|2, where (1.1) reads

∂tρ+∇x · (ρu) = 0,

∂tu + u · ∇xu =

∫
φ(|x− y|)(u(y, t)− u(x, t))ρ(y, t) dy − ax.

(2.1)

2.1. General considerations. We begin by recording general observations on system (1.1)
which is subject to sufficiently smooth data (ρ0,u0), such that ρ0 > 0 is compactly supported.
Denote the total mass

m0 :=

∫
ρ0(x) dx > 0.

• Interaction kernels. We assume that the system (1.1) is driven by an interaction kernel
from a general class of admissible kernels.

Assumption 2.1 (Admissible kernels). We consider (1.1) with interaction kernel φ such
that

(i) φ(r) is positive, decreasing and bounded : 0 < φ(r) 6 φ(0) := φ+ <∞; (2.2a)

(ii) φ(r) decays slow enough at infinity in the sense that

∫ ∞
rφ(r) dr =∞. (2.2b)
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Note that (2.2b) allows a larger admissible class of φ’s with thinner tails than the usual ‘fat-
tail’ assumption (1.3) which characterizes unconditional flocking of potential-free alignment,
e.g., the original choice of Cucker-Smale, φ(r) = (1 + r2)−β, β 6 1/2 is now admissible for
the improved range β 6 1.

• Harmonic oscillators. The distinctive feature of the alignment dynamics with quadratic
potential (2.1), is its Galilean invariance w.r.t. the dynamics of harmonic oscillator associated
with (2.1). Thus, let (xc,uc) denote the mean position and the mean velocity

xc(t) :=
1

m0

∫
xρ(x, t) dx

uc(t) :=
1

m0

∫
u(x, t)ρ(x, t) dx;

(2.3a)

by (2.1), these means are governed by the harmonic oscillator{
ẋc = uc

u̇c = −axc.
(2.3b)

The translated quantities centered around the means, ρ̂(x, t) = ρ(xc(t) + x, t) and û(x, t) =
u(xc(t) + x, t)−uc(t), satisfy the same system (2.1) with vanishing mean location and mean
velocity. We can therefore assume without loss of generality, after re-labeling (ρ̂, û) ; (ρ,u),
that the solution of (2.1) satisfies∫

xρ(x, t) dx ≡ 0,

∫
u(x, t)ρ(x, t) dx ≡ 0, for all t > 0. (2.4)

• Energy decay. We record below the basic energy bounds with general external potentials.
Let E(t) denote the total energy associated with (1.1),

E(t) :=

∫ (
1

2
|u(x, t)|2 + U(x)

)
ρ(x, t) dx (2.5)

The fundamental bookkeeping of (1.1) is the L2-energy decay

d

dt
E(t) = −1

2

∫ ∫
φ(|x− y|)|u(x, t)− u(y, t)|2ρ(x, t)ρ(y, t) dx dy (2.6)

This relates the decay rate of the energy to the enstrophy, quantified in terms of energy
fluctuations on the right. We emphasize that the bound (2.6) applies to general external
potentials U .

2.2. Bounded support. A priori estimates for the growth rate of the support of ρ is the
key for proving flocking results for admissible kernels φ with proper decay at infinity. For
the case without external potential, it is straightforward to show that the velocity varia-
tion maxt>0,x,y∈supp ρ(·,t) |u(x, t)− u(y, t)| is non-increasing, which implies the linear growth,
diam(supp ρ(·, t)) = O(t) which in turn yields the ‘fat-tail’ condition (1.3). Here we show
that confining effect of the external potential enforces the support of ρ(·, t) to remain uni-
formly bounded.

To this end, define the maximal particle energy

P (t) := max
x∈supp ρ(·,t)

(1

2
|u(x, t)|2 + U(x)

)
. (2.7)
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The confinement effect of the external potential shows that this L∞-particle energy remains
uniformly bounded in time. We then ‘pair’ the quadratic growth of U(x) with the admissi-
bility of thin-tails assumed in (2.2b), to show that supp ρ(·, t) remains uniformly bounded.

Lemma 2.1 (Uniform bounds on particle energy). Let (ρ,u) be a smooth solution to
(2.1) with an admissible interaction kernel (2.2). Then the particle energy and hence the
support of ρ(·, t) remain uniformly bounded

a

8
D2(t) 6 P (t) 6 R0, D(t) := diam(supp ρ(·, t)). (2.8)

Here, the spatial scale R0 = R0(φ+,m0, a, E0, P0) is dictated by (2.12) below.

For the proof, follow the particle energy F (x, t) := 1
2
|u(x, t)|2 +U(x) along characteristics,

F ′ =∂tF + u · ∇F

=u ·
(
−u · ∇u +

∫
φ(x− y)(u(y)− u(x))ρ(y) dy −∇U(x)

)
+ u · (u · ∇u) + u · ∇U(x)

=u ·
(∫

φ(x− y)(u(y)− u(x))ρ(y) dy

)
=

∫
φ(x− y)(u(x) · u(y)− |u(x)|2)ρ(y) dy

=

∫
φ(x− y)

(
− 1

4
|u(y)|2 + u(x) · u(y)− |u(x)|2

)
ρ(y) dy +

∫
φ(x− y)

1

4
|u(y)|2ρ(y) dy

=−
∫
φ(x− y)|u(x)− 1

2
u(y)|2ρ(y) dy +

1

4

∫
φ(x− y)|u(y)|2ρ(y) dy 6

φ+

2
Ek(t),

where Ek(t) denotes the kinetic energy

d

dt
P (t) 6

φ+

2
Ek(t), Ek(t) :=

1

2

∫
|u(x, t)|2ρ(x, t) dx. (2.9)

We emphasize that the bound (2.9) applies to general symmetric kernels φ and is other-
wise independent of the fine structure of the potential U . Recalling the diameter D(t) =
diam(supp ρ(·, t)), then L2-energy decay (2.6) yields

d

dt
E(t) 6 −1

2
φ(D(t))

∫ ∫
|u(x, t)−u(y, t)|2ρ(x, t)ρ(y, t) dx dy,

and in view of (2.4), this decay rate can be formulated in terms of the kinetic energy

d

dt
E(t) 6 −2m0φ(D(t))Ek(t). (2.10)

Further, the support of ρ(·, t) can be bounded in terms of the particle energy we have

P (t) > U(x) =
a

2
max

supp ρ(·,t)
|x|2 > a

8
D2(t), D(t) = diam(supp ρ(·, t)). (2.11)

Finally, by the fat-tail assumption (2.2b),

∫ ∞
φ(
√

8r/a) dr =
a

4

∫ ∞
rφ(r) dr = ∞, there

exists a finite spatial scale R0 > P0 such that∫ R0

P0

φ(
√

8r/a) dr >
φ+

4m0

E0. (2.12)
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We now consider the functional Q(t) := E(t) +
4m0

φ+

∫ P (t)

R0

φ(
√

8r/a) dr which we claim is

non-positive: indeed, by (2.12), Q(0) 6 0 and in view of (2.9)–(2.11), Q(t) decreasing in
time

d

dt
Q(t) 6 −2m0φ(D(t))Ek(t) +

4m0

φ+

φ+

2
Ek(t)× φ(

√
8P (t)/a) 6 0.

It follows that the particle energy remains uniformly bounded,

4m0

φ+

∫ P (t)

R0

φ(
√

8r/a) dr 6 Q(t) 6 0,

hence P (t) remain bounded, P (t) 6 R0, and the uniform bound on D(t) stated in (2.8)
follows from (2.11). �

For the typical example of φ(r) = c0(1 + r2)−β we find that (2.12) holds with

R0 >
a

8

[((
1 +

8

a
P0

)1−β
+

2(1− β)φ+

ac0m0

E0

) 1
1−β − 1

]
.

Remark 2.2 (On quadratic potential and pairwise interactions). We emphasize that
the proof of lemma 2.1 relies on the special structure of the quadratic potential, namely, the
Galilean invariance with respect to harmonic oscillator (2.3b) which no longer holds for a
general potentials. Specifically, observe that by the Galilean invariance, the energy decay rate
(2.6) in terms of energy fluctuations is converted into the L2-energy decay (2.10).
We close this section by noting that the same Galilean invariance is intimately related to the
fact that quadratic external forcing can be interpreted as pairwise interactions,

ẋi = vi

v̇i =
1

N

∑
j 6=i

φ(|xi − xj|)(vj − vi)−
a

N

∑
j 6=i

(xi − xj).
(2.13)

Indeed, since the averages for the solution to (1.2) with U = a
2
|x|2— the center of mass

xc(t) := 1/N
∑

i xi and mean velocity uc(t) := 1/N
∑

i vi satisfy (2.3b), we find that the
translated quantities xi 7→ xi − xc(t), vi 7→ vi − uc(t) satisfy (2.13). Similarly, the large
crowd dynamics associated with (2.13)
∂tρ+∇x · (ρu) = 0,

∂tu + u · ∇xu=

∫
φ(|x− y|)(u(y, t)− u(x, t))ρ(y, t) dy− a

m0

∫
(x− y)ρ(y, t) dy,

(2.14)

coincides with (2.1) under suitable Galilean variable transformation.

2.3. Flocking of smooth solutions with exponential rate. The uniform-in-time bound
on the supp ρ(·, t)in (2.8) shows that the values φ(r) with r >

√
8R0/a play no role in the

solution of (2.1). We can therefore assume without loss of generality that our admissible φ’s
are uniformly bounded from below,

φ(r) > φ(D(t)) > φ− > 0, φ− := φ
(√8R0√

a

)
. (2.15)

This enables us prove our main statement of flocking with exponential decay.
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Theorem 2.3 (Flocking with L2-exponential decay). Let (ρ,u) be a global smooth
solution of (2.1), subject to compactly supported ρ0. Then there holds the flocking estimate
at exponential rate in both velocity and position:

δE(t) :=

∫ ∫
(|u(x, t)− u(y, t)|2 + a|x− y|2)ρ(x, t)ρ(y, t) dx dy 6 2 · δE0 · e−λt. (2.16)

Here λ = λ(a, φ−, φ+,m0) > 0.

Remark 2.4. In fact, one could develop a small-data result, where the exponential flock-
ing asserted in theorem 2.3 is extended to U ’s close to quadratic potential provided under
appropriate smallness condition on the initial data.

From the proof of theorem 2.3, one can take the decay rate

λ = λ(a) :=
1

2
min

{
m0φ−

m2
0φ

2
+/a+ 3/2

,

√
a

2

}
(2.17)

If one fixes m0, φ+, φ− and considers the asymptotic behavior for a→ 0, then the decay rate
λ = O(a). For a → ∞, the decay rate λ = O(1). This shows that the strength of external
potential force may have significant influence on the rate of flocking, and a weak potential
tends to give a slower decay. One could interpret this as follows: to achieve an equilibrium,
both velocity and position have to align; if the potential force is weak, then the alignment
of position happens on a slower time scale, since the potential-free Cucker-Smale interaction
does not provide position alignment.

Next, we turn to improve the L2-flocking estimate in theorem 2.3 into an L∞ estimate:

Theorem 2.5 (Flocking with uniform exponential decay). Let (ρ,u) be a global smooth
solution of (2.1), subject to compactly supported ρ0. Then

δP (t) := max
x,y∈supp ρ(·,t)

(|u(x, t)− u(y, t)|2 + a|x− y|)2 6 C∞ · δP0 · e−λt/2, ∀t > 0 (2.18)

where the decay rate λ = λ(a) > 0 given by (2.17) and C∞ is a positive constant given by

C∞ = 4
(

1 + φ2
+m

2
0

( 2

m0φ−λ(a)
+

4

a

))
.

We conclude that the smooth solution of (2.1) converges exponentially to the harmonic
oscillator (2.3)

ρ(x, t)−m0δ(x− xc(t))
t→∞−→ 0,

ρu(x, t)−m0uc(t)δ(x− xc(t))
t→∞−→ 0.

(2.19)

Note that since δE 6 m2
0 · δP , the L∞-version of flocking stated in theorem 2.5 is an

improvement of theorem 2.3: this improvement will be crucial in studying the existence of
global smooth solution for two-dimensional systems asserted in theorem 4.3 below.

Remark 2.6 (blow-up as a � 1). We note in passing that (2.18) does not recover the
velocity alignment in the potential-free case due to the blow-up of C∞ = O(1/a) as a → 0.
The growing bound is due to the proof in which we estimate the momentum φ ∗ (ρu) as
a source term by using L2 exponential decay in theorem 2.3: yet, the L2-decay rate λ(a)
deteriorates as a → 0, and the effect of an increasing source term leads to the blow-up of
C∞. Indeed, it is known that the unconditional velocity alignment in the potential-free case is
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restricted to the ‘fat-tails’ (1.3), hence our approach for the thinner tails (2.2) cannot apply
uniformly in 1/a.

3. Statement of main results — flocking with general convex potentials

3.1. General considerations. We now turn our attention to alignment dynamics (1.1)
with more general strictly convex potentials, (1.4). The flocking results are more restricted.
We begin with specifying the smaller class of admissible interaction kernels.

Assumption 3.1 (Admissible kernels). We consider (1.1) with interaction kernel φ such
that

(i) φ(r) is positive, decreasing and bounded : 0 < φ(r) 6 φ(0) := φ+ <∞; (3.1a)

(ii) φ(r) decays slow enough at infinity in the sense that lim sup
r→∞

rφ(r) =∞. (3.1b)

Notice that (3.1b) is only slightly more restrictive than the usual ‘fat-tail’ assumption∫ ∞
0

φ(r) dr = ∞, which characterize unconditional flocking in the case of potential-free

alignment [HT2008, HL2009].

We begin noting that the basic bookkeeping of energy decay (2.5) still holds,

d

dt
E(t) = −1

2

∫ ∫
φ(|x− y|)|u(x, t)− u(y, t)|2ρ(x, t)ρ(y, t) dx dy.

• Uniform bounds. A necessary main ingredient in the analysis of (1.1) is the uniform
bound of diam(supp ρ(·, t)), and the amplitude of velocity max

x∈supp ρ
|u(x, t)|. Our next lemma

shows that whenever one has a uniform bound of |u(x, t)|+|x| for the restricted class of lower-
bounded φ’s which scales like O(1/minφ), then it implies a uniform bound of |u(x, t)|+ |x|
for the general class of admissible φ’s (2.2).

Lemma 3.1 (The reduction to lower-bounded φ’s). Consider (1.1) with a with the
restricted class of lower-bounded φ’s:

0 < φ− 6 φ(r) 6 φ+ <∞. (3.2)

Assume that the solutions (ρ̃, ũ) associated with the restricted (1.1),(3.2), satisfy the uniform
bound (with constants C± depending on U, φ+,m0 and E0)

max
t>0,x∈supp ρ̃(·,t)

(|ũ(x, t)|+ |x|) 6 max

{
C+ · max

x∈supp ρ̃0
(|ũ0(x)|+ |x|) , C−

φ−

}
. (3.3)

Then the following holds for solutions associated with a general admissible kernel φ (3.1): if
(ρ,u) is a smooth solution of (1.1), then there exists α > 0 (depending on the initial data
(ρ0,u0)), such that (ρ,u) coincides with the solution, (ρ̃α, ũα), associated with the lower-
bounded φα(r) := max{φ(r), α}.

This means that if φ belongs to the general class of admissible kernels (3.1), then we can
assume, without loss of generality, that φ coincides with the lower bound φα and hence the
uniform bound (3.3) holds with φ− = α. The justification of this reduction step is outlined
below.
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Proof of Lemma 3.1. By the condition (2.2b), there exists r0 such that r0φ(r0) > 2C−, and
one could take large enough r0 such that

r0 > 2C+ · max
x∈supp ρ0

(|u0(x)|+ |x|). (3.4)

Let α = φ(r0). By assumption, (3.3) holds for the lower-bounded φα, so that

max
t>0,x∈supp ρα(·,t)

(|uα(x, t)|+ |x|) 6 max
{
C+ · max

x∈supp ρ0
(|u0(x)|+ |x|), C−

α

}
(3.5)

where (ρα,uα) is the smooth solution of (1.1) with interaction kernel φα, which we assume
to exist. Therefore, for any t > 0 and any x,y ∈ supp ρα(·, t), we have

|x− y| 6 |x|+ |y| 6 2 max
{
C+ · max

x∈supp ρ0
(|u0(x)|+ |x|), C−

α

}
(3.6)

By definition,
C−
α

=
C−
φ(r0)

6
r0
2

(3.7)

Together with (3.4), we obtain |x−y| 6 r0 for which, by the monotonicity of φ, φ(|x−y|) >
φ(r0) = α. But for this x,y which persist with a ball of diameter r0 we have φ(|x − y|) =
φα(|x− y|) so the dynamics of (ρα,uα) coincides with (ρ,u). �

Remark 3.2. For the special case φ(r) =
φ+

(1 + r2)β/2
with β < 1, the proof of Corollary 3.1

shows that one could take

α = φ(r0), r0 = max

{
4

(
C−
φ+

) 1
1−β

, 2C+ · max
x∈supp ρ0

(|u0(x)|+ |x|)

}
(3.8)

Therefore, the lower cut-off at α, which depends on β,m0, φ+ and the initial data, gets
smaller when β approaches 1.

The following proposition asserts the uniform bounds (3.3) exist for the restrictive class
of kernels bounded from below, under very mild conditions on U .

Proposition 3.3. Assume the potential U satisfies

a

2
|x|2 6 U(x) 6

A

2
|x|2, a|x| 6 |∇U(x)| 6 A|x|, ∀x ∈ Ω, 0 < a 6 A. (3.9)

Consider the alignment system (1.1),(3.9) with an interaction kernel which is assumed to be
bounded from below, (3.2). Then there exist constants C±, depending on U, φ+,m0 and E0,
such that (3.3) holds.

Remark 3.4. We note in passing that if U is strictly convex potential satisfying (1.4) then
(3.9) follows. Indeed, assuming without loss of generality, that U has a global minimum at

the origin so that U(0) = ∇U(0) = 0, and expressing ∇U(x) =
∫ 1

0
∇2U(sx)x ds we find

|∇U(x)| 6
∫ 1

0
A|x| ds = A|x| while strict convexity implies

x · ∇U(x) =

∫ 1

0

x>∇2U(sx)x ds > a|x|2 ; |∇U(x)| > a|x|;
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moreover, expressing U(x) =
∫ 1

0
∇U(sx) · x ds we find

a

2
|x|2 =

∫ 1

0

1

s
a|sx|2 ds 6

∫ 1

0

1

s
∇U(sx) · sx ds 6 U(x) 6

∫ 1

0

A|sx| · |x| ds =
A

2
|x|2.

Thus, the assumed bounds (3.9) follow from (1.4). In fact, (3.9) allows more general scenar-
ios than uniform convexity including, notably, more complicated topography involving than
one local minima. The flocking behavior of such scenarios are considerably more intricate,
consult [HS2018].
It is straightforward to generalize Proposition 3.3 to the case when (3.9) only holds for suf-
ficiently large |x|. We omit the details.

3.2. Flocking of smooth solutions with convex potentials. From now on we will re-
strict attention to uniformly lower bounded kernels, so that φ satisfies (3.2), 0 < φ− 6
φ(x) 6 φ+. The reduction Lemma 3.1 tells us that the results will automatically apply
to the class of all admissible kernels which satisfy (2.2). We develop a hypocoercivity argu-
ment, different from the one used in the quadratic case, which gives the following L2-flocking
estimate with algebraic decay rate.

Theorem 3.5 (Flocking with L2-algebraic decay). Consider the system (1.1) with uni-
formly convex potential (1.4), 0 < aId×d 6 ∇2U(x) 6 AId×d and with a C1 admissible
interaction kernel φ, (3.1). Assume, in addition, that φ satisfies the linear stability condi-
tion

m0φ(0) >
A√
a
. (3.10)

Let (ρ,u) be a global smooth solution subject to compactly support ρ0. Then there holds
flocking at algebraic rate in both velocity and position, namely, there exist a constant C
(with increasing dependence on |φ′|∞) such that

δE(t) :=

∫ ∫
(|u(x)− u(y)|2 + a|x− y|2)ρ(x)ρ(y) dx dy 6

C√
1 + t

δE0. (3.11)

The proof of Theorem 3.5 involves three ingredients. First, from the total energy estimate,
we show that when t is large enough, most of the agents almost concentrate as a Dirac mass,
traveling at almost the same velocity. Second, for such a concentrated state, one can replace
φ by the constant kernel φ(0) without affecting the dynamics too much, which in turn implies
that the agents near the Dirac mass will be attracted to it, consult theorem 3.6 below. Third,
this gives some monotonicity of the energy dissipation rate, which in turn gives (3.11).

The L∞ counterpart of Theorem 3.5 is still open. If one could obtain an L∞ flocking
estimate, then it might be possible to have flocking estimates for φ with thinner tails, similar
to what was done in sec. 2.

The origin of the stability condition (3.10) can be traced to the case of a constant kernel,
φ, where the algebraic convergence stated in theorem 3.5 is in fact improved to exponential
rate.

Theorem 3.6 (Flocking with L2-exponential decay– constant φ). Let (ρ,u) subject to
compactly supported ρ0 be a global smooth solution of (1.1) with uniformly convex potential
(1.4), 0 < aId×d 6 ∇2U(x) 6 AId×d, and assume that the interaction kernel φ is constant
satisfying

m0φ >
A√
a

(3.12)
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Then it undergoes unconditional flocking at exponential rate in both velocity and position:
there exist λ > 0 and C > 0 depend on a,A,m0φ such that

δE(t) 6 C · δE0 · e−λt. (3.13)

Remark 3.7. One may wonder about the necessity of the stability condition (3.10). In fact,
already in the simplest case of a constant φ where the Cucker-Smale (1.2) is reduced to{

ẋi = vi

v̇i = φ · (v̄ − vi)−∇U(xi)
v̄ :=

1

N

∑
j

vj, (3.14)

one may encounter ’orbital instability’, where arbitrarily small initial fluctuations |xi(0) −
xj(0)|+ |vi(0)−vj(0)| subject to 1d non-convex potential may grow to be O(1) at some time,
[HS2018]. The stability condition (3.10) guarantees, in the case of convex potentials, strong
enough alignment that prevents scattering and eventual flocking. The question of the precise
necessary stability condition vis a vis convexity remains open.

4. Existence of global smooth solutions

According to proposition 3.3, convex potentials guarantee that the reduction lemma 3.1
holds, hence we can focus our attention, without loss of generality, on lower-bounded kernels
such that φ− = minφ(·) > 0.

4.1. Existence of 1D solutions with general convex potentials. We begin with one-
dimension (for which u,x are scalars, written as u, x). The 1D setup is covered in the next
two theorems, where we
(i) guarantee the existence of global smooth solution for a class of sub-critical initial config-
urations; and
(ii) guarantee a finite time blow-up for a class of super-critical initial configurations.

Theorem 4.1 (Global smooth solutions — 1D problem). Let the space dimension
d = 1. Assume U ′′ is bounded

a 6 U ′′(x) 6 A, ∀x ∈ Ω (4.1)

with A being a constant satisfying

A <
(m0φ−)2

4
. (4.2)

Further assume that

max
x∈supp ρ0

(∂xu0(x) + (φ ∗ ρ0)(x)) >
m0φ−

2
−
√

(m0φ−)2

4
− A (4.3)

then (1.1) admits global smooth solution.

Observe that the statement of theorem 4.1 is independent of the lower-bound a, whether
positive of negative: its only role enters in the upper-bound of

maxux(·, t) . max
{
c0(max

x
u′0,m0, φ+),

√
max{0,−2a}

}
.
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Theorem 4.2 (Finite-time blow-up — 1D problem). Assume U ′′(x) > a, ∀x ∈ Ω.
The 1D problem (1.1) admits finite-time blow-up under the following circumstances.
(i) If a is large enough so that

a >
(m0φ+)2

4
, (4.4)

then there is unconditional blowup: ∂xu blows up to −∞ in finite time for any initial data.
Otherwise, blow-up occurs if the initial data is super-critical in one of the following two
configurations:

(ii) If a > 0 is not large enough for (4.4) to hold1, then ∂xu blows up to −∞ in finite time
if there exists x ∈ Ω such that

∂xu0(x) + (φ ∗ ρ0)(x) <
m0φ+

2
−
√

(m0φ+)2

4
− a. (4.5)

(iii) If a 6 0, then ∂xu blows up to −∞ in finite time if there exists x ∈ Ω such that2

∂xu0(x) + (φ ∗ ρ0)(x) <
m0φ−

2
−
√

(m0φ−)2

4
− a. (4.6)

Note that in the potential-free case U = 0, theorems 4.1 and4.2 amount to the sharp
threshold condition ∂xu0(x) + (φ ∗ ρ0)(x) > 0 which is necessary and sufficient for global
1D regularity, see [CCTT2016, ST2017a]. When the external potential U is added, these
theorems indicate that convex U enhances the scenario of blowup in (1.1), while concave
U ’s makes more restrictive scenarios for possible blow up. In other words, the size of U ′′

determines the influence of the external potential on the threshold for the existence of global
smooth solution.

It is also interesting to see that the flocking phenomena is not relevant for the existence of
global smooth solution. In fact, (4.1) does not require U to be confining, i.e., lim|x|→∞ U(x) =
∞. Even if U is confining, it may happen that flocking phenomena do not happen at a rate
which is uniform in initial data, see the ’orbital instability’ examples in [HS2018]. All these
complications do not affect the existence of global smooth solutions at all.

4.2. Existence of 2D solutions with quadratic potentials. We state our results on the
critical thresholds for the existence of global smooth solution, for two space dimensions, for
quadratic potentials.

Theorem 4.3 (Global smooth solutions with 2D quadratic potential). Consider the
two-dimensional system (2.1) subject to initial data (ρ0,u0). Let (ηS)0 denote the spectral
gap – the difference between the two eigenvalues of the symmetric matrix ∇Su0 := 1/2(∇u0 +
(∇u0)

>). Assume that the initial data are sub-critical in the sense that the following holds
(in terms of λ given in (2.17) and |φ′|∞)

c21 := m2
0φ

2
− −

(
max

x∈supp ρ0
|(ηS)0(x)|+ C∗ ·

√
δP0

)2

−4a > 0, C∗ :=
64

λ
m0|φ′|∞

√
C∞ (4.7)

max
x∈supp ρ0

(∇ · u0(x) + (φ ∗ ρ0)(x)) > 0. (4.8)

Then (1.1) admits global smooth solution.

1Notice that in this condition the RHS in (4.5) is positive.
2Notice that in this condition the RHS of (4.6) is negative.
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This result can be viewed as a generalization of the main result of [HeT2017]. Compared
to the latter, besides the pointwise smallness requirements for ηS, the L∞ variation of u, and
the quantity ∇ · u0 + (φ ∗ ρ0), we also require the smallness of the L∞ variation in x, see
(2.18), the definition of δP . This is because the effect of the external potential may convert
variation in x into variation in u of the same order after some time.

For a → 0, one has C∗ = O(a−3/2), and for a → ∞, one has C∗ = O(1). Therefore,
the condition (4.7) cannot hold if a is either too small (the C∗ term will blow up) or too
large (the 4a term will blow up). Intuitively speaking, the reason for blow-up in the first
case is that one does not have a good flocking estimate, and thus the velocity variation may
affect the dynamics of ∇u in an uncontrollable way. The reason in the second case is similar
to the 1d case: a ’very convex’ potential tends to induce blow-up directly. Therefore, in
order to guarantee the existence of two-dimensional global smooth solution, one first needs
m0φ− large enough, and then taking moderately size a will satisfy (4.7), if the initial data
is well-chosen (ηS, δP not too large and ∇ · u0 + (φ ∗ ρ0) non-negative).

4.3. Existence of 2D solutions with general convex potentials. For the existence of
global smooth solution for general external potentials, one difficulty is as follows: a critical
property of the quadratic potential used in the proof of Theorem 4.3 is that it has no
effect on the dynamics of ηS (which is a crucial ingredient of the proof), since the Hessian
∇2U is constant multiple of the identity matrix. However, this is not true in general, and
the effect of the external potential on ηS can be as large as the distance between the two
eigenvalues of ∇2U . Another difficulty is that for many cases of U we do not have a large
time flocking estimate, and the contribution from the variation of u to the dynamics of ηS
may accumulate over time. Interestingly, we discover that both issues can be resolved by
requiring slightly strengthening the critical threshold (as in [TW2008]): instead of requiring
the quantity ∇ · u0 + φ ∗ ρ0 nonnegative, we require it to have a positive lower bound. (In
fact, one expects the second difficulty not to be essential, since the 1d case suggests that
flocking estimates should not be a necessary ingredient for the existence of global smooth
solution.)

Theorem 4.4 (Global 2D smooth solutions with convex potential). Consider the
two-dimensional system (1.1) subject to initial data (ρ0,u0), with external potential U being
sub-quadratic:

|∇2U(x)| 6 A. (4.9)

Assume the apriori uniform bound on the velocity field holds,

max
t>0,x∈supp ρ(·,t)

|u(x, t)| 6 umax <∞. (4.10)

If the initial data, (ρ0,u0), are sub-critical in the sense that the following holds

Cmax := 8|φ′|∞m0umax + 2A <
m2

0φ
2
−

2
− 2A =: CA, (4.11)

max
x∈supp ρ0

|(ηS)0(x)| 6
√
CA +

√
C2
A − C2

max, (4.12)

max
x∈supp ρ0

(∇ · u0(x) + (φ ∗ ρ0)(x)) >

√
CA −

√
C2
A − C2

max, (4.13)

then (1.1) admits global smooth solution.
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Notice that Proposition 3.3 already gives an a priori estimate

umax = max

{
C+ · max

x∈supp ρ0
(|u0(x)|+ |x|), C−

φ−

}
(4.14)

for a general class of external potentials, including those satisfying (1.4) (with the further
assumption that the unique global minimum of U is U(0) = 0, without loss of generality).
Also, Theorem 4.4 also applies to the cases when other a priori estimates of |u| are available.

5. Proof of main results — hypocoercivity bounds

5.1. Quadartic potentials. We prove theorems 2.3 and 2.5, making use of the uniform
lower-bound of φ(r) > φ− in (2.15).

Proof of theorem 2.3. Since the fluctuations functional δE(ρ,u) in (3.13) satisfies δE(ρ,u) =
δE(ρ̂, û), it suffices to study (2.1) with (xc(0) = 0,uc(0)) = (0, 0) ; (xc(t),uc(t)) ≡ (0, 0),
for which the fluctuations coincide with (multiple of) the energy

δE(t) = 4m0

∫ (1

2
|u(x, t)|2 +

a

2
|x|2
)
ρ(x, t) dx. (5.1)

As before, the energy decay is dictated by the minimal value min
x,y∈supp ρ(·,t)

φ(|x− y|) > φ− :=

φ(
√

8R0/a),

∂t

∫ (1

2
|u(x, t)|2 +

a

2
|x|2
)
ρ(x, t) dx=−1

2

∫ ∫
φ(x− y)|u(y)−u(x)|2ρ(x)ρ(y) dx dy

6− φ−
2

∫ ∫
|u(y)− u(x)|2ρ(x)ρ(y) dx dy = −m0φ−

∫
|u|2ρ dx.

(5.2)

Then we compute the cross term

∂t

∫
u(x, t) · xρ(x, t) dx

=−
∫

(u(x, t) · x)∇ · (ρu) dx +

∫
x ·
(
−u · ∇u +

∫
φ(x− y)(u(y)− u(x))ρ(y) dy − ax

)
ρ dx

=− a
∫
|x|2ρ dx +

∫
|u|2ρ dx +

∫ ∫
φ(x− y)x · (u(y)− u(x))ρ(x)ρ(y) dx dy

6− a
∫
|x|2ρ dx +

∫
|u|2ρ dx +

φ+

2

∫ ∫ ( a

m0φ+

|x|2 +
m0φ+

a
|u(y)− u(x)|2

)
ρ(x)ρ(y) dx dy

=− a

2

∫
|x|2ρ dx +

(
1 +

m2
0φ

2
+

a

)∫
|u|2ρ dx

Adding a λ-multiple of this cross term — λ is yet to be determined, we conclude that

∂t

∫ (1

2
|u(x, t)|2 +

a

2
|x|2 + 2λu(x, t) · x

)
ρ(x, t) dx

6−
(
m0φ− − 2λ

(
1 +

m2
0φ

2
+

a

))∫
|u|2ρ dx− 2λ

∫
a

2
|x|2ρ dx.

(5.3)
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which means the LHS is a Lyapunov functional if λ > 0 is small enough: in fact, we set

λ =
1

2
min

{
m0φ−

(1 +
m2

0φ
2
+

a
) + 1

2

,

√
a

2

}
, (5.4)

to conclude that the Lyapunov functional

V (t) :=

∫ (1

2
|u(x, t)|2 +

a

2
|x|2 + 2λu(x, t) · x

)
ρ(x, t) dx, (5.5)

admits the decay bound
d

dt
V (t) 6 −λ

∫
(|u|2 + a|x|2)ρ dx. Noting that this modified Lya-

punov functional is comparable to the energy functional (recall 2λ 6
√
a/2)

δE

4m0

=
1

2

∫
(|u|2 + a|x|2)ρ dx 6 V (t) 6

∫
(|u|2 + a|x|2)ρ dx =

δE

2m0

,

we conclude its dissipativity V ′(t) 6 −λV (t) which in turn proves the L2-flocking bound

(3.13),
δE(t)

4m0

6 V (t) 6
δE0

2m0

e−λt. �

Proof of theorem 2.5. We define the perturbed energy functional

F1(x, t) :=
1

2
|u(x, t)|2 +

a

2
|x|2 + 2λ1u(x, t) · x (5.6)

where λ1 > 0 is yet to be determined. Then we compute the derivative of F1 along charac-
teristics:

F ′1 =∂tF1 + u · ∇F1

=(u + 2λ1x) ·
(
−u · ∇u +

∫
φ(x− y)(u(y)− u(x))ρ(y) dy − ax

)
+ u · (u · ∇u) + au · x + 2λ1|u|2 + 2λ1x · (u · ∇u)

=− 2λ1a|x|2 + (u + 2λ1x) ·
(∫

φ(x− y)(u(y)− u(x))ρ(y) dy

)
+ 2λ1|u|2

=−2λ1a|x|2−(φ ∗ ρ)|u|2+u · (φ ∗ (ρu))+2λ1x · ((φ ∗ (ρu))− (φ ∗ ρ)u)+2λ1|u|2.

(5.7)

We bound the convolution terms of the right of (5.7): by (2.8) we have
m0φ− 6 (φ ∗ ρ)(x) 6 m0φ+; further, by (5.1) δE(t) > 4m0Ek(t) and the exponential decay
of L2-Lyapunov functional, (3.13), imply

|(φ ∗ (ρu))(x)| =
∣∣∣∣∫ φ(x− y)u(y)ρ(y) dy

∣∣∣∣
6φ+

∫
|u(y)|ρ(y) dy 6 φ+

√
m0

(∫
|u|2ρ dy

)1/2

6 φ+

√
m0

√
2δE0√
2m0

e−λt/2.
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We conclude that the perturbed energy functional F1 does not exceed

F ′1 6− 2λ1a|x|2 −m0φ−|u|2 +
(m0φ−

2
|u|2 +

φ2
+

2m0φ−
δE0 · e−λt

)
+
(λ1a

2
|x|2 +

2λ1φ
2
+

a
δE0 · e−λt

)
+ 2λ1m0φ+

( a

4m0φ+

|x|2 +
m0φ+

a
|u|2
)

+ 2λ1|u|2

6− λ1a|x|2 −
(m0φ−

2
− 2λ1

(
1 +

m2
0φ

2
+

a

))
|u|2 + C0 · δE0 · e−λt

with

C0 =
( 1

2m0φ−
+

2λ1
a

)
φ2
+. (5.8)

Therefore, by choosing λ1 as

λ1 :=
1

4
min

{ m0φ−

(1 +
m2

0φ
2
++1

a
) + 1

4

,

√
a

2

}
>
λ

2
, (5.9)

one has

F ′1(t) 6 −
λ

2
(a|x|2 + |u|2) + C0 · δE0 · e−λt 6 −

λ

2
F1(t) + C0 · δE0 · e−λt,

with the explicit bound F1(t) 6 e−λt/2 (F1(0) + 2C0 · δE0/λ). Finally, since max
x∈supp ρ(·,t)

F1(x, t)

is comparable with δP , namely
1

8
δP 6 F1 6

1

2
δP and δE 6 m2

0 ·δP , the result (2.18) follows

with C∞ = 4(1 + 4C0m
2
0/λ). �

5.2. General convex potentials. We begin with the proof of Proposition 3.3, which con-
firms the the uniform bound |u| + |x| in terms of O(1/φ−). The main idea is to study
the evolution of the particle energy 1

2
|u(x, t)|2 + U(x) along characteristics, and conduct

hypocoercivity arguments to handle the possible increment of the particle energy due to the
Cucker-Smale interaction.

Proof of Proposition 3.3. We define

F (x, t) =
1

2
|u(x, t)|2 + U(x) + cu(x, t) · ∇U(x) (5.10)

with c > 0 being small, to be chosen. Then it follows from the assumptions on U that

F − 1

4
|u|2 − a

4
|x|2 =

1

4
|u|2 + (U(x)− a

4
|x|2) + cu(x, t) · ∇U(x)

>
1

4
|u|2 +

a

4
|x|2 − c

2
(

1

4c
|u|2 + 4c|∇U(x)|2)

>
1

8
|u|2 +

a

4
|x|2 − 2c2A2|x|2 > 0.

(5.11)
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Now fix c 6

√
a

8A2
. Then we compute the derivative of F along characteristics:

F ′ =∂tF + u · ∇F

=(u + c∇U(x)) ·
(
−u · ∇u +

∫
φ(x− y)(u(y)− u(x))ρ(y) dy −∇U(x)

)
+ u · (u · ∇u) + u · ∇U(x) + cu>∇2U(x)u + c∇U(x) · (u · ∇u) (5.12)

=− c|∇U(x)|2 + (u + c∇U(x)) ·
(∫

φ(x− y)(u(y)− u(x))ρ(y) dy

)
+ cu>∇2U(x)u

=− c|∇U(x)|2 − (φ ∗ ρ)|u|2 + u · (φ ∗ (ρu)) + c∇U(x) · ((φ ∗ (ρu))− (φ ∗ ρ)u)

+ cu>∇2U(x)u

Noticing that m0φ− 6 (φ ∗ ρ)(x) 6 m0φ+, the convolution term on the right of (5.12) can
be upper-bounded in terms of the dissipating energy E(t) in (2.5)

|(φ ∗ (ρu))(x)| =
∣∣∣∣∫ φ(x− y)u(y)ρ(y) dy

∣∣∣∣ 6 φ+

∫
|u(y)|ρ(y) dy

6φ+

∫
|u(y)|ρ(y) dy 6 φ+m

1/2
0

(∫
|u|2ρ dy

)1/2

6 2φ+m
1/2
0 E1/2(0), ∀x.

Therefore

F ′ 6− c|∇U(x)|2 −m0φ−|u|2 + (
m0φ−

2
|u|2 +

2

m0φ−
φ2
+m0E0)

+ (
c

4
|∇U(x)|2 + 4cφ2

+m0E0) + (cm0φ+)(
1

4m0φ+

|∇U(x)|2 +m0φ+|u|2) + cA|u|2

6− c

2
|∇U(x)|2 −

(m0φ−
2
− c(A+m2

0φ
2
+)
)
|u|2 + C0

with

C0 =
( 2

m0φ−
+ 4c

)
φ2
+m0E0 (5.13)

Therefore, by choosing

c = min

{
m0φ−

A+ 2(A+m2
0φ

2
+)
,

√
a

8A2

}
(5.14)

one has

F ′ 6 − c
2

(|∇U(x)|2 + A|u|2) + C0 (5.15)

Next we notice that

F 6
1

2
|u|2 +

A

2
|x|2 +

c

2
(
1

c
|u|2 + cA2|x|2)

6 max
{

1,
1 + c2A

2

}
(|u|2 + A|x|2) = |u|2 + A|x|2

and

|∇U(x)|2 + A|u|2 > min
{
A,
a2

A

}
(|u|2 + A|x|2) =

a2

A
(|u|2 + A|x|2)
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This means that if

F (x, t) >
2AC0

a2c
:= CF (5.16)

then F ′ 6 0. Thus F cannot further increase (along characteristics) if it is larger than CF .
It is clear that c = O(φ−) and C0 = O(1/φ−) for small φ−. Therefore CF = O(1/φ2

−).
Therefore, by (5.11) we get

|u|+ |x| 62
(

1 +
1√
a

)√
F 6 2(1 +

1√
a

)
√

max{CF , max
x∈supp ρ0

F (x, 0)}

62
(

1 +
1√
a

)√
max{CF , max

x∈supp ρ0
|u0(x)|2 + A|x|2}

6max
{
C+ · max

x∈supp ρ0
(|u0(x)|+ |x|), 2(1 +

1√
a

)
√
CF ,

}
, C+ := 2

√
A(1 +

1√
a

)

and the term 2(1 + 1√
a
)
√
CF scales like O(1/φ−) for small φ−. �

When dealing with convex potential U(x) = a
2
|x|2 we used the fact that the mean location

xc and mean velocity uc satisfies the closed system, (2.3), which enabled us to convert
the measure of L2-fluctuations into an energy-based functional. In case of general convex
potentials, however, the mean location xc and mean velocity uc do not satisfy a closed system
and therefore one cannot reduce the problem with xc = uc = 0, for which δE is equivalent
to the total energy. Therefore one cannot using hypocoercivity on the energy estimate to
obtain the decay of δE. Instead, we will construct a Lyapunov functional which is equivalent
to δE directly. We begin with the case of a constant interaction kernel.

Proof of Theorem 3.6. Recall that we assumed φ is constant. Denote K := m0φ so that the
convolution terms with φ amount to simple averaging, (φ ∗ f)(x) = K

∫
f dx. We will use

the ρ-weighted quantities

〈f(x,y), g(x,y)〉 :=

∫ ∫
f(x,y) · g(x,y)ρ(x)ρ(y) dx dy, |f(x,y)|2 := 〈f(x,y), f(x,y)〉

for any scalar or vector functions f, g, where we suppress its dependence on t.
We compute the time derivative of the following quantity (where β > 0 to be determined):

F (t) =
K

2
|x− y|2 + 〈x− y,u(x)− u(y)〉+

β

2
|u(x)− u(y)|2 (5.17)
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dF

dt
=

∫ ∫ [
(
K

2
|x− y|2 + (x− y) · (u(x)− u(y)) (5.18)

+
β

2
|u(x)− u(y)|2)(−∇x · (ρ(x)u(x))ρ(y)−∇y · (ρ(y)u(y))ρ(x))

+ (x− y + β(u(x)− u(y))) · (−u(x) · ∇xu(x) + u(y) · ∇yu(y)

−Ku(x) +Ku(y)−∇U(x) +∇U(y))ρ(x)ρ(y)
]

dx dy

=

∫ ∫ [
K(x− y) + (u(x)− u(y)) +∇xu(x)(x− y + β(u(x)− u(y)))) · u(x) (5.19)

+ (−K(x− y)− (u(x)− u(y))−∇yu(y)(x− y + β(u(x)− u(y)))) · u(y)

+ (x− y + β(u(x)− u(y))) · (−u(x) · ∇xu(x) + u(y) · ∇yu(y)

−Ku(x) +Ku(y)−∇U(x) +∇U(y))
]
ρ(x)ρ(y) dx dy

=

∫ ∫ [
− (Kβ − 1)|u(x)− u(y)|2 − (x− y) · (∇U(x)−∇U(y))

− β(u(x)− u(y)) · (∇U(x)−∇U(y))
]
ρ(x)ρ(y) dx dy.

Notice that

(x−y) · (∇U(x)−∇U(y)) =

∫ 1

0

(x−y)>∇2U((1− θ)y + θx)(x−y) dθ > a|x−y|2 (5.20)

and similarly

|(u(x)− u(y)) · (∇U(x)−∇U(y))| 6 A|u(x)− u(y)| · |x− y| (5.21)

Then we obtain

(5.19) 6− (Kβ − 1)|u(x)− u(y)|2 − a|x− y|2 + Aβ|u(x)− u(y)| · |x− y| (5.22)

We want to choose a β such that the RHS of (5.22), as a quadratic form, is negative-definite,
i.e., its discriminant is

A2β2 − 4a(Kβ − 1) = A2β2 − 4aKβ + 4a < 0 (5.23)

This is possible, since by (3.12) (4aK)2 − 16A2a = 16a(aK2 − A2) > 0, and we can take

β :=
2aK

A2
(5.24)

and then
dF

dt
6 −µ1(|u(x)− u(y)|2 + a|x− y|2) = −µ1δE (5.25)

for some µ1 > 0 (whose explicit form will be given in Remark 5.2). With this choice of β,
the discriminant of the LHS of (5.19) is

12 − 4
K

2

β

2
= 1− 2aK2

A2
< 1− 2aA2

aA2
= −1

and thus it is positive definite. One can estimate F above and below by µ3δE 6 F 6 µ2δE

for some µ2 > µ3 > 0. Therefore F (t) 6 F (0)e
−µ1
µ2 and then

δE(t) 6
1

µ3

F (t) 6
1

µ3

F (0)e
−µ1
µ2 6

µ2

µ3

δE(0)e
−µ1
µ2
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�

Remark 5.1. The key idea of the proof is the cancellation of the term K(x−y)·(u(x)−u(y))
in (5.19). For large K, this term is O(K), while the two good terms are O(K) and O(1)
respectively. If this term was not cancelled, then it could not be absorbed by the good terms.

In fact, the positive/negative K(x−y)·(u(x)−u(y)) terms are given by the time derivative
of K

2
|x − y|2 and 〈x − y,u(x) − u(y)〉 respectively. Therefore, in the Lyapunov functional,

one cannot change the coefficient ratio between a square term |x − y|2 and the cross term
〈x− y,u(x)− u(y)〉. This is an essential difference from the standard hypocoercivity theory
(for which the cross term can be arbitrarily small).

Remark 5.2. One can obtain the explicit expression of µ1 from (5.22) by letting the good
terms absorb the bad term exactly, i.e., solving the quadratic equation

(Kβ − 1− µ1)(a− aµ1) =
A2β2

4

yields µ1 =
aK2

A2
−
√
a2K4

A4
− aK2

A2
+ 1 > 0; similarly, one obtains µ2,3 as

µ2,3 =
1

2a

(
a2K

A2
+
K

2
±
√

(
a2K

A2
+
K

2
)2 − 4a(

aK2

2A2
− 1

4
)

)
> 0.

To handle the case with non-constant φ, we start with the following lemma:

Lemma 5.3. With the same assumptions as Theorem 3.5, further assume the apriori uni-
form bound on the velocity field:

max
t>0,x∈supp ρ(·,t)

(|u(x, t)|+ |x|) 6 umax <∞. (5.26)

Fix any ε1 small enough. Assume that at time t0, one can write supp ρ(·, t0) into the disjoint
union of two subsets:

supp ρ(·, t0) = S1 ∪ S2, S1 ∩ S2 = ∅ (5.27)

which satisfies ∫
S2

ρ(x, t0) dx 6 ηε1 (5.28)

with η > 0 depending on φ, U , umax but independent of ε1, and

δP (t0;S1) := sup
x,y∈S1

(|u(x)− u(y)|2 + a|x− y|2) 6 ε1 (5.29)

Let S1(t), S2(t) be the image of S1, S2 under the characteristic flow map from t0 to t. Then

δP (t;S1(t)) 6 ε1, ∀t > t0 (5.30)

In this lemma, S1 consists of the particles which are almost concentrated as a Dirac mass,
and S2 the other particles, which can be far away from the Dirac mass, but whose total mass
is small. The lemma claims that the Dirac mass will not scatter around for all time. It can
be viewed as a perturbative extension of the constant φ case, applied to the Dirac mass S1.

Also notice that (3.3) gives (5.26) with umax being the RHS of (3.3).
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Proof. Define

F (x,y, t) :=
K

2
|x− y|2 + (x− y) · (u(x, t)− u(y, t)) +

β

2
|u(x, t)− u(y, t)|2,

F∞(t;S) = max
x,y∈S

F (x,y, t)

where K = m0φ(0), and the choice of β is the same as the proof of Theorem 3.6, so that F is a
positive-definite quadratic form. Fix two characteristics x(t) and y(t) with x(t0),y(t0) ∈ S1,
and we compute the time derivative of F along characteristics:

d

dt
F (x(t),y(t), t)

= ∂tF + u(x) · ∇xF + u(y) · ∇yF

= ((x− y) + β(u(x)− u(y))) ·
(
− u(x) · ∇xu(x) + u(y) · ∇xu(y)

+

∫
φ(x− z)(u(z)− u(x))ρ(z) dz−

∫
φ(y − z)(u(z)− u(y))ρ(z) dz

)
+ u(x) · (K(x− y) + (u(x)− u(y)) + (x− y) · ∇xu(x) + β(u(x)− u(y)) · ∇xu(x))

− u(y) · (K(x− y) + (u(x)− u(y)) + (x− y) · ∇yu(y) + β(u(x)− u(y)) · ∇yu(y))

= −(Kβ − 1)|u(x)− u(y)|2

− (x− y) · (∇U(x)−∇U(y))− β(u(x)− u(y)) · (∇U(x)−∇U(y))

+
(
(x− y) + β(u(x)− u(y))

)
·
(∫

(φ(x− z)− φ(0))(u(z)− u(x))ρ(z) dz

−
∫

(φ(y − z)− φ(0))(u(z)− u(y))ρ(z) dz
)
.

The first three terms are less than a negative definite quadratic form, as in the proof of
Theorem 3.6. Now we handle the last term, which results from the fact that φ is not
constant.

By the definition of S1(t), one has x(t),y(t) ∈ S1(t) for all t > t0. If z ∈ S1(t), then

|x− z| 6
√
δP (t;S1(t))/a 6 C1

√
F∞(t;S1(t)) for some constant C1, since F is comparable

with |u(x)− u(y)|2 + a|x− y|2. Therefore

|φ(x− z)− φ(0)| 6 |φ′|∞C1

√
F∞(t;S1(t)) (5.31)

It follows that∣∣∣∣((x− y) + β(u(x)− u(y)))·
∫
S1(t)

(φ(x− z)− φ(0))(u(z)− u(x))ρ(z) dz

∣∣∣∣ 6 C2F∞(t;S1(t))
3/2

with C2 = (1/
√
a+ β)m0|φ′|∞C3

1 .
If z ∈ S2(t), then we use the uniform bound (5.26) to estimate u(z)− u(x), and obtain∣∣∣∣((x− y) + β(u(x)− u(y)))·

∫
S2(t)

(φ(x− z)− φ(0))(u(z)− u(x))ρ(z) dz

∣∣∣∣ 6 C3ηε1F∞(t;S1(t))
1/2

with C3 = (1/
√
a+ β)C1 · 2φ+ · 2umax. Similar conclusions hold with x and y exchanged.

Therefore we conclude that

d

dt
F (x(t),y(t), t) 6 −µF (x(t),y(t), t) + C2F∞(t;S1(t))

3/2 + C3ηε1F∞(t;S1(t))
1/2
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with µ > 0 a constant. Taking x(t),y(t) as the characteristics where maxx,y∈S1(t) F (x,y, t)
is achieved, we obtain

df

dt
6 −µf + C2f

3/2 + C3ηε1f
1/2, f(t) = F∞(t;S1(t)).

Now set η =
C3

C2

and assume ε1 6
µ2

16C2
2

, then
df

dt
< 0 whenever f(t) = ε1, and hence the

bound f(t) < ε1 persists in time. The conclusion of the theorem follows from the fact that f
and δP (t;S1(t)) are comparable (up to adjust the upper bound ε1 by constant multiple). �

The next lemma guarantees the existence of a partition satisfying the assumptions of
Lemma 5.3, in case the L2 variation of velocity and location is small:

Lemma 5.4. With the same assumptions as in theorem 3.5, for any ε1 > 0,

δE(t0) <
m0ηε

2
1

2
(5.32)

implies the existence of a partition satisfying (5.28) and (5.29).

Proof. Recall that (xc(t),uc(t)) denote the mean location and velocity (2.3a). Then∫ ∫
(|u(x)− u(y)|2 + a|x− y|2)ρ(x)ρ(y) dx dy

=

∫ ∫
(|(u(x)− uc)− (u(y)− uc)|2 + a|(x− xc)− (y − xc)|2)ρ(x)ρ(y) dx dy

=2m0

∫
(|u(x)− uc|2 + a|x− xc|2)ρ(x) dx

(5.33)

Thus, at time t0,∫
|u(x)−uc|2+a|x−xc|2> ε14

ρ(x) dx 6
4

ε1

∫
(|u(x)−uc|2 +a|x−xc|2)ρ(x) dx 6

4

ε1

1

2m0

m0ηε
2
1

2
= ηε1

Therefore, we can take S2 := {x : |u(x) − uc|2 + a|x − xc|2 > ε1/4}, and (5.28) is satisfied.
Then for any x,y ∈ S1 := supp ρ\S2, one has

|u(x)− u(y)|2 + a|x− y|2 6|(u(x)− uc)− (u(y)− uc)|2 + a|(x− xc)− (y − xc)|2

62(|u(x)− uc|2 + a|x− xc|2 + |u(y)− uc|2 + a|y − xc|2)

64
ε1
4

= ε1

which means (5.29) is also satisfied.
�
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Proof of Theorem 3.5. We start by a hypocoercivity argument on the energy estimate. Using
the notation in the proof of Theorem 3.6,

d

dt
〈x− y,u(x)− u(y)〉

=

∫ ∫ [
(x− y) · (u(x)− u(y))(−∇x · (ρ(x)u(x))ρ(y)−∇y · (ρ(y)u(y))ρ(x))

+ (x− y) ·
(
− u(x) · ∇xu(x) +

∫
φ(x− z)(u(z)− u(x))ρ(z) dz−∇U(x)

− u(y) · ∇yu(y) +

∫
φ(y − z)(u(z)− u(y))ρ(z) dz−∇U(y)

)
ρ(x)ρ(y)

]
dx dy

=|u(x)− u(y)|2 +

∫ ∫
(x− y) ·

(∫
φ(x− z)(u(z)− u(x))ρ(z) dz

+

∫
φ(y − z)(u(z)− u(y))ρ(z) dz

)
ρ(x)ρ(y) dx dy − 〈x− y,∇U(x)−∇U(y)〉

6|u(x)− u(y)|2 − a|x− y|2 + 2(
a

4
|x− y|2 +

m2
0φ

2
+

a
|u(x)− u(y)|2)

=− a

2
|x− y|2 +

(
1 +

2m2
0φ

2
+

a

)
|u(x)− u(y)|2

(5.34)

where we used∣∣∣∣∫ ∫ (x− y) ·
∫
φ(x− z)(u(z)− u(x))ρ(z) dzρ(x)ρ(y) dx dy

∣∣∣∣
6φ+c1|x− y|2 +

φ+

4c1

∫ ∫ (∫
|(u(z)− u(x))|ρ(z) dz

)2

ρ(x)ρ(y) dx dy

6φ+c1|x− y|2 +
φ+

4c1

∫ ∫
m0

∫
|(u(z)− u(x))|2ρ(z) dzρ(x)ρ(y) dx dy

6φ+c1|x− y|2 +
m2

0φ+

4c1
|u(x)− u(y)|2

(5.35)

with c1 = a/4φ+. Combined with the energy estimate (2.6), we obtain, for any c > 0,

d

dt

(
E(t) + c〈x− y,u(x)− u(y)〉

)
6 −

(φ−
2
− c
(
1 +

2m2
0φ

2
+

a

))
|u(x)− u(y)|2 − ca

2
|x− y|2.

Then, setting

c := min
{ φ−/2

1 + 2m2
0φ

2
+/a+ 1/2

,

√
a

8m0

}
(5.36)

we have
d

dt
(E(t) + c〈x− y,u(x)− u(y)〉) 6 − c

2
(|u(x)− u(y)|2 + a|x− y|2) = − c

2
δE(t).

Notice that since U(x) > a
2
|x|2,

〈x− y,u(x)− u(y)〉 6 1

2
√
a

(a|x− y|2 + |u(x)− u(y)|2)

6
2m0√
a

∫
(a|x|2 + |u(x)|2)ρ(x) dx 6

4m0√
a
E(t)
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Therefore E(t)+c〈x−y,u(x)−u(y)〉 > 0,which in turn implies that

∫ ∞
0

δE(t) dt =: C0 <∞.

Next, for any fixed t1 > 0, there exists t0 6 t1 such that δE(t0) 6
C0

t1
; (otherwise the

integral
∫ t1
0
δE(t) dt would exceed C0). Lemma 5.4 implies that there exists a partition at

t = t0 satisfying (5.28) and (5.29), with ε1 given by ε1 =

√
2C0

m0ηt1
. If t1 is large enough,

then ε1 is small enough, so that we can apply Lemma 5.3 to get that (5.30) holds for all
t > t0. In particular, (5.30) holds for t = t1. Therefore, by using (5.30) for pairs (x,y) with
x,y ∈ S1(t1) and the uniform bound (3.3) for other pairs, we obtain (umax denoting the RHS
of (3.3))

δE(t1) 6 m2
0ε1 + 2m0ηε1 · 4(1 + a)u2max = Cε1 (5.37)

and the proof is finished by noticing that ε1 = O(1/
√
t1) for large t1. �

6. Proof of main results — existence of global smooth solutions

6.1. The one-dimensional case. The proof of the existence of global smooth solutions
for 1d follows the technique of [CCTT2016]: we analyze the ODE satisfied by the quantity
∂xu+ φ ∗ ρ along characteristics.

Proof of Theorem 4.1. Write d := ∂xu. Differentiate the second equation of (6.1) with re-
spect to x to get

∂tρ+ u∂xρ = −ρd

∂td + u∂xd + d2 = −u
∫
∂xφ(x− y)ρ(y) dy −

∫
φ(x− y)∂tρ(y) dy

− d

∫
φ(x− y)ρ(y) dy − U ′′(x)

(6.1)

Expressed in terms of e := d + φ ∗ ρ and the time derivative along characteristics denoted
by ′, then (6.1) reads

ρ′ = −ρ(e− φ ∗ ρ)

e′ = −e(e− φ ∗ ρ)− U ′′.
(6.2)

If e > 0, then by (4.1),

e′ > −e(e−m0φ−)− A = −
(
e− m0φ−

2

)2

+

(
(m0φ−)2

4
− A

)
.

Then by (4.2), one has

e′ > 0, for
m0φ−

2
−
√

(m0φ−)2

4
− A < e <

m0φ−
2

+

√
(m0φ−)2

4
− A.

By (4.3), initially e >
m0φ−

2
−
√

(m0φ−)2

4
− A for all x. Therefore the same inequality

persists for all time.
Also notice that if e > 2m0φ+ then e′ 6 −e2/2 − a, which implies e is bounded above by

e 6 max{maxx e0, 2m0φ+,
√

max{0,−2a}}. Since φ ∗ ρ is bounded above and below, this
implies that ∂xu is uniformly bounded, and thus global smooth solution exists. �
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Proof of Theorem 4.2. We start from (6.2), the dynamic of e, which is derived in the previous
proof. We analyze the sign of e′ in the cases of positive and negative e:

• If e > 0, then

e′ 6 −e(e−m0φ+)− a = −
(
e− m0φ+

2

)2

+

(
(m0φ+)2

4
− a
)

(6.3)

– If (4.4) holds, then e′ < 0.
– If (4.4) does not hold, then if

e <
m0φ+

2
−
√

(m0φ+)2

4
− a (6.4)

then e′ < 0.
• If e < 0 then

e′ 6 −e(e−m0φ−)− a = −
(
e− m0φ−

2

)2

+

(
(m0φ−)2

4
− a
)

(6.5)

– If a > 0, then e′ < 0.
– If a 6 0, then if

e <
m0φ−

2
−
√

(m0φ−)2

4
− a (6.6)

then e′ < 0.

Notice that for all the e′ < 0 cases above, we actually have e′ < −ε < 0. Therefore, as
long as one stays in the e′ < 0 cases, e will keep decreasing until it is negative enough so
that the −e2 term blows it up. Therefore, we have the following situations where we can
guarantee a finite time blow-up:

• If (4.4) holds, then any negative values of e will have e′ < 0 since a > 0, and any
positive values of e will have e′ < 0.
• If (4.4) does not hold but a > 0 and (4.5) holds (which means (6.4) holds initially),

then (6.4) will propagate since e′ < 0 for positive or negative values of e.
• If (4.4) does not hold and a 6 0 but (4.6) holds (which means (6.6) holds initially:

in particular, e starts with negative values), then (6.6) will propagate since e′ < 0
(because e stays negative).

�

6.2. The two-dimensional case. We follow [HeT2017], tracing the dynamics of the matrix
Mij = ∂jui associated with the solution to (1.1). Since most steps are the same as in
[HeT2017, Theorem 2.1] except for the additional external potential term on the right of
(1.1), we outline the derivation along the same steps as in [HeT2017] while omitting excessive
details.

STEP 1: M satisfies

∂tM + u · ∇M +M2 = −(φ ∗ ρ)M +R−∇2U (6.7)

where
Rij = ∂jφ ∗ (ρui)− ui(∂jφ ∗ ρ) (6.8)

The divergence d = ∇ · u, satisfies

∂td + u · ∇d + TrM2 = −(φ ∗ ρ)d + TrR−∆U. (6.9)
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The two traces in this equation are evaluated as follows. By (6.8), TrR = −(φ ∗ ρ)′; also,
TrM2 ≡ 1

2

(
d2 + η2M

)
where ηM is the spectral gap of the two eigenvalues of M . We find

(d + φ ∗ ρ)′ = −1

2
η2M −

1

2
d(d + 2φ ∗ ρ)−∆U (6.10)

Decompose M into its symmetric and anti-symmetric parts, M = S+Ω, then η2M = η2S−4ω2

where ηS is the spectral gap of S and ω = (∂1u2 − ∂2u1)/2 is the scaled vorticity. Then by
introducing e = d + φ ∗ ρ we finally end up with

e′ =
1

2
(4ω2 + (φ ∗ ρ)2 − η2S − e2 − 2∆U), e := d + φ ∗ ρ (6.11)

STEP 2: The ‘e-equation’ is complemented by the dynamics of the spectral gap ηS. To this
end, we follow the spectral dynamics of S,

S ′ + S2 = ω2I − (φ ∗ ρ)S +Rsym −∇2U, Rsym =
1

2
(R +R>);

where I stands for the identity matrix. The dynamics of the eigenvalues µi of S is given by

µ′i + µ2
i = ω2 − (φ ∗ ρ)µi + 〈si, Rsymsi〉 − 〈si,∇2Usi〉

where s1, s2 are the orthonormal eigenpair of S. Taking their difference,

η′S + eηS = q := 〈s2, Rsyms2〉 − 〈s1, Rsyms1〉 − 〈s2,∇2Us2〉+ 〈s1,∇2Us1〉. (6.12)

STEP 3: We need to estimate ηS based on (6.12). A good estimate of ηS will give a non-
negative lower bound of e. We will conduct this estimate for the quadratic potential and
general convex potentials in different ways in the following subsections.

STEP 4: Finally we need an upper bound of e. The dynamics of ω is independent of the
symmetric forcing term ∇2U ,

ω′ + eω =
1

2
Tr(JR), J =

[
0 −1
1 0

]
, (6.13)

Therefore we can bound ω in the same way as we bound ηS, and this yields an upper bound
of e. This would conclude the proof of the uniform boundedness of d = ∇ · u. Combined
with the uniform boundedness of ηS and ω, we get the uniform boundedness of ∇u.

• Quadartic potentials. . We elaborate STEP 3 and STEP 4 for the quadratic potential.
For the 2D case with quadratic potential, ∇2U is constant multiple of the identity matrix,
and thus the last two terms in (6.12) cancel. Also, we already know from proposition 2.5
that the solution flocks at exponential rate, in the sense of L∞. This enables us to estimate
ηS in the same way as in [HeT2017].

Proof of Theorem 4.3. For U(x) = a
2
|x|2, the q defined in (6.12) becomes

q = 〈s2, Rsyms2〉 − 〈s1, Rsyms1〉 (6.14)

with R satisfying the estimate

|R| 6 8m0|φ′|∞
√
C∞ · δP0 · e−λt/4, ∀x

Therefore, since s1, s2 are unit vectors,

|q| 6 16m0|φ′|∞
√
C∞ · δP0 · e−λt/4. ∀x



FLOCKING HYDRODYNAMICS WITH EXTERNAL POTENTIALS 27

Hence, as long as e remains non-negative, ηS is bounded by constant:

|ηS| 6 max
x
|(ηS)0(x)|+ 64

λ
m0|φ′|∞

√
C∞ · δP0 = max

x
|(ηS)0(x)|+ C∗ ·

√
δP0. (6.15)

STEP 3: The e equation (6.11) implies

e′ >
1

2
(c21 − e2) (6.16)

with c1 defined by (4.7). In this case, (6.16) implies that e remains non-negative if e0(x) > 0
for all x, as assumed in (4.8).

STEP 4: Similarly we obtain from (6.13) that ω is uniformly bounded:

|ω| 6 max
x

ω0(x) +
32

λ
m0|φ′|∞

√
C∞ · δP0 =: ωmax (6.17)

Then, since ∆U = 2a > 0, (6.11) shows e′ 6 1
2
(4ω2

max +m2
0φ

2
+− e2), and we end up with the

uniform upper bound, e 6 max
{

maxx e0(x),
√

4ω2
max +m2

0φ
2
+

}
. �

• General convex potentials. Recall that in the case of quadratic potential, the last two
terms in (6.12) cancel since ∇2U is a constant multiple of the identity matrix. Also, Rsym

has an exponential decay estimate by the L∞ flocking result. These two facts enabled us to
estimate ηS by |(ηS)0|+

∫∞
0
|q(t)| dt, without making use of the good term eηS.

However, for general convex potentials, we lack a flocking estimate, and the last two terms
in (6.12) do not cancel. Therefore, q, the RHS of (6.12), do not have a time decay estimate.
The best we can hope is to bound q uniformly in time by a constant Cmax, and then propagate
a positive lower bound c2 of e, in order to control ηS by max{|(ηS)0|, Cmaxc2

}.

Proof of Theorem 4.4. We start from (6.12). Since si are normalized, q is controlled by
Proposition 3.3 and assumption (4.9) as

|q| 6 8m0|φ′|∞umax + 2A = Cmax (6.18)

where Cmax is as defined in (4.11). Hence, assume we have the lower bound (which is true
initially, by assumption (4.13))

e >

√
CA −

√
C2
A − C2

max =: c2 > 0 (6.19)

(the quantity inside the inner square root is positive, by assumption (4.11)) where CA as
defined in (4.11), then ηS is bounded by constant:

|ηS| 6 max
{

max
x
|(ηS)0(x)|, Cmax

c2

}
:= ηS,max (6.20)

STEP 3: (6.11) implies

e′ >
1

2
(c21 − e2), c1 :=

√
m2

0φ
2
− − η2S,max − 4A =

√
2CA − η2S,max, (6.21)

provided the quantity inside the square root on the right is positive. In fact, assumption
(4.12) gives

2CA −max
x
|(ηS)0(x)|2 > CA −

√
C2
A − C2

max = c22
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and by (6.19), 2CA − (Cmax
c2

)2 = c22. Thus we have 2CA − η2S,max = c22, and therefore c1 is

well-defined and coincides with c1 = c2 > 0. With this, (6.21) now reads e′ > 1/2(c22 − e2)
and hence e is increasing whenever e 6 c2. This means the initial bound e > c2 can be
propagated for all time.

STEP 4: Similarly we obtain from (6.13) that ω is uniformly bounded:

|ω| 6 max

{
max

x
|ω0(x)|, 4m0|φ′|∞umax

c2

}
=: ωmax

Then (6.11) shows, since |∆U | 6 2A, e′ 6 1
2
(4ω2

max + m2
0φ

2
+ + 4A − e2). Thus we get the

upper bound, e 6 max
{

maxx e0(x),
√

4ω2
max +m2

0φ
2
+ + 4A

}
. �
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